首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18467篇
  免费   2744篇
  国内免费   3345篇
测绘学   1516篇
大气科学   2476篇
地球物理   3013篇
地质学   7224篇
海洋学   2408篇
天文学   5281篇
综合类   1038篇
自然地理   1600篇
  2024年   52篇
  2023年   188篇
  2022年   545篇
  2021年   606篇
  2020年   644篇
  2019年   747篇
  2018年   623篇
  2017年   660篇
  2016年   704篇
  2015年   772篇
  2014年   1062篇
  2013年   1231篇
  2012年   1209篇
  2011年   1310篇
  2010年   1223篇
  2009年   1539篇
  2008年   1454篇
  2007年   1457篇
  2006年   1320篇
  2005年   1178篇
  2004年   922篇
  2003年   788篇
  2002年   689篇
  2001年   612篇
  2000年   529篇
  1999年   503篇
  1998年   407篇
  1997年   244篇
  1996年   215篇
  1995年   192篇
  1994年   180篇
  1993年   199篇
  1992年   100篇
  1991年   76篇
  1990年   69篇
  1989年   46篇
  1988年   61篇
  1987年   20篇
  1986年   23篇
  1985年   33篇
  1984年   31篇
  1983年   18篇
  1982年   16篇
  1981年   7篇
  1980年   13篇
  1979年   4篇
  1978年   7篇
  1977年   19篇
  1976年   2篇
  1954年   2篇
排序方式: 共有10000条查询结果,搜索用时 265 毫秒
71.
文章基于2013—2019年度海洋科学技术奖,运用计量统计、社会网络分析等研究方法,探究海洋科学技术奖获奖成果计量特征、学科分布、获奖机构及其科研合作关系等,直观揭示海洋科学技术奖所构成的科研合作范式、科研合作网络结构等,以期为海洋科研管理、科技创新和学科建设等提供科学参考。研究表明:整体上,海洋科学技术奖获奖成果呈逐年递增趋势,一等奖与二等奖的获奖等级比值呈下降趋势;学科划分上,获奖成果主要隶属于“海洋科学”学科,又以海洋生物学、海洋装备与设备、海洋化学和物理海洋学为主体;获奖机构方面,海洋科学技术奖已奖励包括中国海洋大学和中国科学院海洋研究所等涉海类高校和科研院所在内的各类海洋科技创新主体285家,分布在山东、浙江、广东、上海、北京、江苏等19个省(市、自治区);科研合作方面,海洋科学技术奖获奖核心机构所构建的科研合作关系紧密,以自然资源部第二海洋研究所的中心度最高,中国海洋大学的中间中心度最高,其控制该科研合作网络中其他机构之间沟通交流的力度最大。  相似文献   
72.
利用再分析资料以及混合层海温诊断方程, 研究1997—1998与2015—2016年超级厄尔尼诺次年北大西洋海表温度异常(sea surface temperature anomalies, SSTA)的差异及成因。结果显示, 北大西洋SSTA在1998年春季呈明显正负正三极型式分布, 而在2016年呈弱的负正负型态。诊断热带北大西洋SSTA的影响因素表明, 1998年春季暖SSTA除了之前研究强调的海洋表面向大气的潜热输送异常减少, 以及吸收太阳辐射的增加外, 海洋动力过程即Ekman纬向漂流也起着重要的作用。热力过程与厄尔尼诺峰值后出现的北大西洋涛动(North Atlantic Oscillation, NAO)负位相有关, 其可引起亚速尔高压减弱, 产生西南风异常, 通过风-蒸发-海表温度(sea surface temperature, SST)反馈机制使热带北大西洋蒸发减弱, 海表增暖, 沃克环流下沉支的东移对这一增暖也有贡献。与1997—1998厄尔尼诺事件不同, 2015—2016厄尔尼诺事件没有强迫出负位相NAO, 而是出现弱NAO正位相, 热带北大西洋为弱的东风异常, 使海表发生一定的冷却, 形成2016春季北大西洋SSTA与1998年的明显差异。  相似文献   
73.
Many of the existing stream–aquifer interaction models available in the literature are very complex with limited applicability in semi‐gauged and ungauged catchments. In this study, to estimate the influent and effluent subsurface water fluxes under limited geo‐hydrometeorological data availability conditions, a simple stream–aquifer interaction model, namely, the variable parameter McCarthy–Muskingum (VPMM) hillslope‐storage Boussinesq (hsB) model, has been developed. This novel model couples the VPMM streamflow transport with the hsB groundwater flow transport modules in online mode. In this integrated model, the surface water–groundwater flux exchange process is modelled by the Darcian approach with the variable hydraulic heads between the river stage and groundwater table accounting for the rainfall forcing. Considering the exchange fluxes in the hyporheic zone and lateral overland flow contribution, this approach is field tested in a typical 48‐km stretch of the Brahmani River in eastern India to simulate the streamflow and its depth with the minimum Nash–Sutcliffe efficiency of 94% and 88%; the maximum root mean square error of 134 m3/s and 0.35 m; and the minimum index of agreement of 98% and 97%, respectively. This modelling approach could be very well utilized in data‐scarce world‐river basins to estimate the stream–aquifer exchange flux due to rainfall forcings.  相似文献   
74.
Topography and landscape characteristics affect the storage and release of water and, thus, groundwater dynamics and chemistry. Quantification of catchment scale variability in groundwater chemistry and groundwater dynamics may therefore help to delineate different groundwater types and improve our understanding of which parts of the catchment contribute to streamflow. We sampled shallow groundwater from 34 to 47 wells and streamflow at seven locations in a 20‐ha steep mountainous catchment in the Swiss pre‐Alps, during nine baseflow snapshot campaigns. The spatial variability in electrical conductivity, stable water isotopic composition, and major and trace ion concentrations was large and for almost all parameters larger than the temporal variability. Concentrations of copper, zinc, and lead were highest at sites that were relatively dry, whereas concentrations of manganese and iron were highest at sites that had persistent shallow groundwater levels. The major cation and anion concentrations were only weakly correlated to individual topographic or hydrodynamic characteristics. However, we could distinguish four shallow groundwater types based on differences from the catchment average concentrations: riparian zone‐like groundwater, hillslopes and areas with small upslope contributing areas, deeper groundwater, and sites characterized by high magnesium and sulfate concentrations that likely reflect different bedrock material. Baseflow was not an equal mixture of the different groundwater types. For the majority of the campaigns, baseflow chemistry most strongly resembled riparian‐like groundwater for all but one subcatchment. However, the similarity to the hillslope‐type groundwater was larger shortly after snowmelt, reflecting differences in hydrologic connectivity. We expect that similar groundwater types can be found in other catchments with steep hillslopes and wet areas with shallow groundwater levels and recommend sampling of groundwater from all landscape elements to understand groundwater chemistry and groundwater contributions to streamflow.  相似文献   
75.
In the identifying process of an oil spill accident, manual integral and artificial visual comparison are commonly used at present to determine the oil spill sources, these methods are time-consuming and easily affected by human factors. Therefore, it is difficult to achieve the purpose of rapid identification of an oil spill accident. In this paper, an intelligent method of automatic recognition, integration and calculation of diagnostic ratio of Gas Chromatography-Mass Spectrometer (GC/MS) spectrum are established. Firstly, four hundreds of samples collected around the world were analyzed using a standard method and Retention time locking technology (RTL) was applied to reduce the change of retention time of GC/MS spectrum. Secondly, the automatic identification, integration of n-alkanes, biomarker compounds, polycyclic aromatic hydrocarbons and calculation of the diagnostic ratios were realized by MATLAB software. Finally, a database of oil fingerprints were established and applied successfully in a spill oil accident. Based on the new method and database, we could acquire the diagnostic ratios of an oil sample and find out the suspected oil within a few minutes. This method and database can improve the efficiency in spilled oil identification.  相似文献   
76.
HY-2 A (Haiyang-2 A) satellite was launched on August 16, 2011 and radar altimeter is one of its main payloads. We reprocessed two years of HY-2 A altimeter sensor geophysical dataset records (SGDR) data. This paper presents the main results in terms of reprocessed HY-2 A altimeter data quality: verification of data availability and validity, monitoring several relevant altimeter parameters, and assessment of the HY-2 A altimeter system performances. A cross-calibration analysis of reprocessed HY-2 A altimeter data with Jason-2 was conducted. The reprocessed HY-2 A altimeter data show good quality and have a low level of noise with respect to Jason-2. The same geophysical correction methods were used to calculate the sea surface height (SSH) for the two missions. The mean standard deviations of the crossover differences for HY-2 A and Jason-2 are 5.24 cm and 5.34 cm, respectively. The mean standard deviation of the crossover differences between HY-2 A and Jason-2 is 5.37 cm. These show that HY-2 A can provide SSH measurements at almost the same level of accuracy as Jason-2. The relative SSH bias between HY-2 A and Jason-2 due to the Ultra Stable Oscillator (USO) drift is obviously observed, and it can affect the calculation of mean sea level and should be further studied and corrected.  相似文献   
77.
ABSTRACT

A dipole structure appears in the sea surface height off the central coast of Vietnam during boreal summer in the South China Sea. This dipole, which possesses a chlorophyll signature associated with higher phytoplankton concentrations arising from nutrient upwelling, is important for the productivity of local fisheries. Multi-satellite sea level anomalies are used to investigate the life cycle of the dipole structure. By applying empirical orthogonal function (EOF) analysis, the third EOF mode (EOF 3) is found to represent the major variations of the dipole structure. By removing the temporal noise of EOF 3, a South China Sea dipole index is defined. This index captures the life cycle of the dipole including its generation, mature strength, and final termination. Both one-dimensional and two-dimensional forecasts are generated using a statistical forecasting method that combines singular-spectrum analysis and the maximum entropy method. The appearance of the dipole structure can be predicted with an accuracy of 78% at one-month lead times and an accuracy of 61% at one-year lead times.  相似文献   
78.
为明确黔北正安地区上奥陶统五峰组至下志留统龙马溪组的页岩气地质特征,充分应用页岩气地质调查、重磁电、二维地震、地质调查井及测试分析等工作方法,开展黔北正安地区1:5万页岩气基础地质调查,对五峰组至龙马溪组富有机质页岩的分布、沉积环境、有机地球化学、岩石矿物、储集性能及含气性等特征进行分析研究,结果表明: 研究区五峰组—龙马溪组富有机质页岩为深水陆棚相沉积,主要分布有安场向斜、斑竹向斜和泥高向斜,厚度14.5~55 m,埋深0~3 200 m; 有机碳(TOC)含量1.0%~4.0%,有机质镜质体反射率(Ro)为1.82%~2.23%,有机质类型以Ⅰ型干酪根为主; 岩石主要由石英、长石和黏土矿物组成,脆性矿物含量高,一般大于50%; 孔隙度为2.03%~3.89%,渗透率为0.35×10-5~1.86×10-5μm2,表现为低孔、特低渗的特征; 最高含气量为2.88 m3/t,显示出较好的含气性特征。综合分析和评价圈出3个页岩气聚集有利区,分别为安场区块、斑竹区块和泥高区块,这为研究区页岩气进一步勘探开发指明了方向。  相似文献   
79.
Identification of the location and intensity of groundwater pollution source contributes to the effect of pollution remediation, and is called groundwater contaminant source identifcation. This is a kind of typical groundwater inverse problem, and the solution is usually ill-posed. Especially considering the spatial variability of hydraulic conductivity field, the identification process is more challenging. In this paper, the solution framework of groundwater contaminant source identification is composed with groundwater pollutant transport model (MT3DMS) and a data assimilation method (Iterative local update ensemble smoother, ILUES). In addition, Karhunen-Loève expansion technique is adopted as a PCA method to realize dimension reduction. In practical problems, the geostatistical method is usually used to characterize the hydraulic conductivity feld, and only the contaminant source information is inversely calculated in the identifcation process. In this study, the identification of contaminant source information under Kriging K-field is compared with simultaneous identification of source information and K-field. The results indicate that it is necessary to carry out simultaneous identification under heterogeneous site, and ILUES has good performance in solving high-dimensional parameter inversion problems.  相似文献   
80.
Crowd-based hydrological observations can supplement existing monitoring networks and allow data collection in regions where otherwise no data would be available. In the citizen science project CrowdWater, repeated water level observations using a virtual staff gauge approach result in time series of water level classes (WL-classes). To investigate the quality of these observations, we compared the WL-class data with “real” (i.e., measured) water levels from the same stream at a nearby gauging station. We did this for nine locations where citizen scientists reported multiple observations using a smartphone app and at 12 locations where signposts were set up to ask citizens to record observations on a paper form that could be left in a letterbox. The results indicate that the quality of the data collected with the app was better than for the forms. A possible explanation is that for each app location, a single person submitted the vast majority of the observations, whereas at the locations of the forms almost every observation was made by a different person. On average, there were more contributions between May and September than during the other months. Observations were submitted for a range of flow conditions, with a higher fraction of high flow observations for the locations were data were collected with the app. Overall, the results are encouraging for citizen science approaches in hydrology and demonstrate that the smartphone application and the virtual staff gauge are a promising approach for crowd-based water level class observations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号